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ABSTRACT 
This paper presents analysis of a modified Feed Forward Multilayer Perceptron (FMP) by inserting an ARMA 

(Auto Regressive Moving Average) model at each neuron (processor node) with the Backp ropagation learning 

algorithm. The stability analysis is presented to establish the convergence theory of the Back propagation 

algorithm based on the Lyapunov function. Furthermore, the analysis extends the Back propagation learning 

rule by introducing the adaptive learning factors. A range of possible learning factors is derived from the 

stability analysis. Performance of such network learning with adaptive learning factors is presented and 

demonstrates that the adaptive learning factor enhance the performance of training while avoiding oscillation 

phenomenon. 
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I. INTRODUCTION 
In the last few decades, Artificial Neural 

Networks (ANNs) have been successfully applied to 

many real world applicationsand proven to be useful 

in various tasks of modeling nonlinear systems, such 

as signal processing, pattern recognition, 

optimization, weather forecasting, to name a few. 

ANN is a set of processing elements (neurons or 

perceptrons) with a specific topology of weighted 

=interconnections between these elements and a 

learning law for updating the weights of 

interconnection between two neurons. To respond to 

the increased demand of system identification and 

forecasting with large set of data, many different 

ANNs structures and learning rules, supervised, or 

unsupervised, have been proposed to meet various 

needs as robustness and stability. The FMP networks 

have been shown to obtain successful results in 

system identification and control [1, 2]. The 

Lyapunov function approach was used to obtain 

stability analysis of Backpropagation training 

algorithm of such network in [3]. The major drawback 

of the FMP is that it requires large number of input 

datafor training to achieve sufficient performance. 

Recurrent neural networks have been shown 

successful in identification of time varying systems 

along with the stability analysis in [4, 5]. However, 

the training process can be very sensitive to initial 

conditions such as number of neurons, the number of 

layers, and value of weights, and learning factors 

which are often chosen by trial and error. This paper 

presents a modified FMP architecture which inserts a 

dynamic filtering capability, ARMA local feedback at 

each neuron in the FMP structure. The 

Backpropagation algorithm is used for learning – 

weight adjusting. Stability analysis will be derived 

using Lyapunov function.  It turns out that the  

 

learning factor must be within a range of values in 

order to guarantee the convergence of the algorithm. 

In the simulation, instead of selecting a learning factor 

by trial and error, authors define an adaptive learning 

factor which satisfies the convergence condition and 

adjust connection weight accordingly. The simulation 

results are presented to demonstrate the performance. 

 

II. BASIC PRINCIPLE OF ARMA-LFMP 

NETWORK 
An identification problem can be outlined as it is 

shown in Figure 1. A set of data is collected from the 

PLANT:  input data and corresponding output data 

observed, or measured as target output of the 

identification problem. The set is often called 

“training set”. A neural network model with 

parameters, called weights, is designed to simulate 

the PLANT. When the output from the neural 

network is calculated, an error between the network 

output and the target output is generated. The 

learning process of neural network is to modify the 

network to minimize the error.  

Consider a system with n inputs  and 

m output unitsY = . In a typical neuron, 

called perceptron, the output Y is expressed as: 

         (1) 

 
Fig.1 Outline of ANN identification problem 
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Fig.2Feedforward multi-layer network 

where  is called connection weight from input ; F 

is a nonlinear sigmoid function with a constant 

number θ, call it slope. 

A FMP network combines number of neurons, 

called nodes, feed forward to next layer of nodes, 

illustrated in Figure 2. Suppose  is the number of 

nodes in the lth layer, each output from thel-1th layer 

will be used as input for the next layer, that can be 

expressed as: 

 (2) 

, where ; L is the number of layers in the 

network and  is the connection weight from the ith 

node in l-1 layer to the jth node in l layer. 

In this structure in Figure 3, an ARMA model is 

inserted at each node in the Local feedback FMP 

network. The outputs from ARMA model are used as 

inputs to the FMP neural network node. The output at 

the j-th node in the l-th layer with an ARMA model is 

expressed as: 

 
and 

         (4) 

where 

 

 
andT is the number of 

patterns of the data set. X represents the output of 

nonlinear sigmoid function for the hidden layer and 

output layer, and is also used as an input to ARMA 

model;  represents the output of ARMA model; a 

and b are connection weights of the ARMA, ν is 

weight of local feedback at each node and DA and DB 

are number of delays for AR and MA processes 

respectively.  

The back-propagation algorithm has become the 

standard algorithm used for training feed-forward 

multilayer perceptrons. It is a generalized the Least 

Mean Square algorithm that minimizes the mean 

squared error between the target output and the 

network output with respect to the weights.  The 

algorithm looks for the minimum of the error 

 

 
Fig. 3 One node of ARMA-LFMP model 

 

function in the weight space using the method of 

gradient descent. The combination of weights which 

minimizes the error function is considered to be a 

solution of the learning problem. A proof of the 

Backpropagation algorithm was presented in [6] based 

on a graphical approach in which the algorithm 

reduces to a graph labeling problem.  

The total error E of the network over all training 

set is defined as 

 
where  is the error associated with pth pattern at 

the kth node of output layer, 

 
where  is the target at kth node and  is the 

output of network at the kth node. 

The network connection weights  

between neurons i in layer l-1 and neuron j in Layer l 

( l = 1, …, L) are updated iteratively by the Gradient 

Descent Rule 

 

 

 
where µ is the learning factor. Substituting (7) into 

(8), (9) and (10), the above updating equation can be 

expressed as follow: 

 

 

 
 

The rate of change of an output from k-th node of 

l-th layer with respect to connection weights a, b,and ν 

in lth layer can be expressed as: 
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                                                                                j(11) 

       (12) 

Where 

             (13) 

  (14) 

where 

          (15) 

 

Further calculation leads to the expressions of , 

 , and  , rate of change of an output from k-

th node of l-thlayer with respect to connection weights 

a, b, and ν in layer l-n  for n < l: 

                                                                                 (16) 

(17) 

(18) 

where 

(19) 

(20) 

(21) 

 

III. STABILITY ANAYLSIS 
Stability for nonlinear systems refers to the 

stability of a particular solution. There may be one 

solution which is stable and another which is not 

stable. There are no inclusive general concepts of 

stability for nonlinear systems. The behavior of a 

system may depend drastically on the inputs and the 

disturbances. However, Lyapunov developed a theory 

to examine the stability of nonlinear systems.  

The definition of Lyapunov function and 

Lyapunov theorem are quoted below [7]: 

 

Definition 1 (Lyapunov function): A scalar function 

V(x) is a Lyapunov function for the system  

                            (22) 

if the following conditions hold: 

1.  and is continuous in x 

2. is positive definite, that 

is, with only if  

3. is negative 

definite, that 

is, with onl

y if ; 

 

Theorem 1(Lyapunov Theorem): The solution 

 for the system given by (11) is 

asymptotically stable if there exists a Lyapunov 

function in x. 

The stability of the learning process in an 

identification approach leads to a better modeling and 

a guaranteed reached performance. According to 

Lyapunov theorem, the determination of stability 

depends on the selection and verification of a positive 

definite function. For the systems defined in (3) – (5), 

assume that the Backpropagation learning rule is 

applied and the error function and weights updating 

rule are defined in (6) – (10), then define   

 
 

The proof is given in the following theorem that 

V(t) satisfies the Lyapunov condition.  

 

Theorem 2:Assume that the nonlinear function F( ) is 

continuous and differentiable, the ARMA-LFMP is 

defined in (3)-(5), rewrite the learning rule (8) - (10) 

in weights vector form as: 
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                   (25) 

                  (26) 

where  ,  are weight vectors in lth layer, 

then the system is stable under the condition: 

 
 

Proof: Assume that the Lyapunov function is defined 

in (23), calculation of leads to: 

 

 

 

 
                                                                           (28) 

Apply the first order Taylor expansion of  

with respect to weight vectors , 

                          

                                                                             (29) 

Substitute (24), (25), and (26) into (29), 

 (30) 

Then, substitute the (30) into (28),  

                                                                          (31) 

 

Apply the algebraic rule 

 into the second 

term of (31) 

                                                                              (32) 

For simplicity, let 

(33) 

Then apply it into (32) and consider that 

, 

, and  

, then 

  (34) 

To ensure that the function V satisfies the Lyapunov 

condition,  

Let the right-hand side of (34) be less than zero, and 

consider that 

, , and 

, 

then we obtain the condition 

  (35) 

Therefore, the ARMA-LFMP system defined in (3)-

(5) is stable when the learning factor in 

Backpropagation learning rule described in (8) –(10) 

satisfies the condition (35). 

For purpose of simplifying the simulation, instead of 

calculating all , , and  for l = 1, … L; j = 1, 

… , the following corollary will identify an upper 

bound of  

 , then 

replace the denominator of the (35) by the upper 

bound that provides a more restrictive but an easier 

calculated condition.  

Consider the infinite norm notation for any vector 

 that =  , for 

simplicity, we use notation  in this paper 

representing ) 

First, for the output layer L, apply infinite norm in 

(11) and the notation , calculation 

leads to 

 
and then 

                                                    (36) 

From (5), 
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                                              (37) 

let , ,and 

 then from (13) 

, 

                              (38) 

Apply(38) into (12) 

 

                                      (39) 

From (15),  

 

                                         (40) 

Apply(40) into (14) 

 

                                       (41) 

Without loss of generality, for change of rate of layer l 

with respect to l-n,we derive for n = 1 first. From (19) 

            (42) 

                                    (43) 

Apply (43) into (16),  

 

                                 (44) 

Similarly, apply norm in (20), and then apply into 

(17),  

                       (45) 

Apply norm in (21), and then apply into (18), 

       (46) 

Inductively, for any layer L-k< L, let  

Δ = ,  

                                       (47) 

                                    (48) 

                                         (49) 

 

Apply (47), (48) and (49) into condition (35), we 

obtain a more restrictive condition as follows: 

                             (50) 

Corollary 1: The ARMA-LFMP system converges if 

the following conditions are satisfied:  

                                           (51) 

                                       (52) 

and . 

 

IV. SIMULATION 
In this section, an example of chaotic system 

known as Henon system is considered to demonstrate 

the effectiveness of developed methods in this paper.  

The Hénon map is a discrete-time dynamical system 

described as:   

 

 

 
 

It is one of the most studied examples of 

dynamical systems that exhibit chaotic behavior. The 

Hénon map takes a point (x(k), y(k)) in the plane and 

maps it to a new point.The map depends on two 

parameters, a and b, which for the classical Hénon 

map have values of a = 1.4 and b = 0.3. For the 

classical values the Hénon map is chaotic. 

In this simulation, consider the system 

 

 
and a three-layer neural network structure was 

selected for  two inputs and two output with number 

of nodes as  5, 5 and 2  in layer 1, 2 and 3 

respectively. 100 patterns of data were generated and 

used for learning. After number of trial and error 

attempts, with slope set as 0.6 and learning factor set 

as constant .01, and random generated initial weights, 

the system reached to absolute error 0.0899999 after 

2177311 iterations. 

With adaptive learning factor, it took 373317 

number of iteration to reach the same threshold of 

0.089999. It is also observed that the error decreases 

steadily while the adaptive learning factor is applied 

and the oscillation of error was observed while a 

predefined constant learning factor is applied.  

The Figure 4 demonstrated 100 patterns of data 

generated from Henon system comparing with 

simulated data from the neural network described 

above.  

The adaptive learning factor guarantees that the 

errors will steadily decrease. The drawback is that it 

increased calculation since an updated learning factor 

needs to be calculated at every weights update based 

on Backpropagation algorithm. Applying the constant 

learning factor avoids the calculation, but a proper 

constant learning factor has to be identified through 
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trial and error. In the Figure 5, the plot demonstrated 

comparison of 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. ANN Simulation of Henon System 

 

errors from learning process with constant learning 

factor and the adaptive learning factor. The constant 

learning factor was selected with value of 0.1. To 

compare the effectiveness of adaptive learning 

method, the 0.1 was used as initial learning factor in 

the adaptive method. Points for the plot were taken 

from the errors of every 1000th of iteration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of errors from learning with  

adaptive and constant learning factor 
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